
Fermi National Accelerator Laboratory 

Comparisons of CPS Performance Under Different 
Network Loads 

Aleardo Manacero, Jr. 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

dcce f ibilce I UNESP 
S.J.R. Preto, Brazil 

January 1994 

Submitted to IEEE Transactions on Computers 

a Operated by Universities Research Association Inc. under Contract No. DE-ACO2-76CH03000 with the United States Department of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof 



Comparisons of CPS performance under different network loads 

Aleardo Manacero Jr.* 
dcce/Ibilce/UNESP - Fermilab 

Abstract 

This work presents results from the comparison tests done 
over two different networks using the CPS ’ (Coopera- 
tive Process Software) distributed tool. One system was 
a non-dedicated UNIX 2 cluster composed by several RISC 
workstations. The other system was another UNIX clus- 
ter which is dedicated to run CPS exclusively for a single 
user. Benchmarks were obtained through the submission 
of a simple test program over the cluster using three differ- 
ent approaches: a single process task, a CPS synchronous 
process and a CPS asynchronous process. The speed-ups 
achieved in both systems were then compared in order to 
make some remarks about the efficiency of CPS under dif- 
ferent conditions of use. From these comparisons it was 
possible to conclude that the CPS should be improved to 
run in a non-dedicated cluster, like the UNIX cluster used 
in this experiment is. 

Index terms: CPS - Cooperative Process Software, 
dedicated network, distributed processing, multi-user 
network, network traffic, performance analysis. 

1 Introduction 

The use of several workstations to perform a single 
task instead of a single workstation would increase the 
speed of problems resolution dramatically. This could 
be antecipated from the description of the CPS man- 
agement system [l], a software tool designed to man- 
age parallel processing over parallel or distributed ma- 
chines, which points to a big gain if your process could 
be split into several subprocesses. The reconstruction 
programs of particles physics have this characteristic. 

Experiments such as the E-791 collaboration at Fer- 
milab [3,2] collect large amounts of data from the colli- 
sion of tagged particles in a fixed target detector. This 
data is composed of events, which are collections of 
electric signals originated in several sections of the de- 
tect,or (Cerenkov, drift chambers, calorimeters, etc.), 
and stored in some kind of storage device to be ana- 
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lyzed at a later moment [4]. The analysis process starts 
with the reconstruction of such data, that is, the search 
for the vertexes and trajectories of all particles that ap 
pear in a single event. Since all events were stored in a 
sequential order, it is possible to treat each of them as 
an independent entity, which could be examined by the 
reconstruction code without any information from an- 
other event. This characteristic makes it appropriate 
to run in computer farms, under tools like CPS. 

Since the use of farms significantly improves the 
speed of the reconstruction and analysis efforts, it is 
also interesting to know the behavior and the perfor- 
mance of the CPS when it is applied to a non-dedicated 
network of workstations, which could provide another 
source of computing power. This performance also 
could be a good measure of the network performance 
when operating under a distributed process problem 
since the parallelism offered by the CPS can be under- 
stood as a distributed operation over the system and 
such an architecture (the network) is quite different 
from the dedicated farm architecture [5]. 

In this work one of the E-791 programs for data 
preparation was used as the benchmark program. This 
program was chosen for the ability to make its CPU de- 
mands per data byte range from some milliseconds to 
a few seconds, which was a necessary condition to the 
benchmark program. The following section describes 
the two systems tested in this comparison. In the third 
section the tests on a dedicated IBM test farm con- 
taining six processing nodes are described. A fourth 
section describes the tests on the UNIX cluster in the 
Physics Department. Following these are sections dis- 
cussing the results from both tests and general consid- 
erations. 

2 Computing environments 

This work was executed on two different computing 
systems. The first and more recognizable one is a 
conventional network of workstations assembled in a 
multi-level bus topology. The other system is a com- 
puter farm, which is a network of workstations assem- 
bled in a way that resembles a master-client parallel 
architecture. 
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Figure 1 shows the conventional network, where the 
most important characteristic is the fact that it is a 
multi-user environment, with no-restrictions in its us- 
age. It has cross-mounted disks, which turns the net- 
work traffic into a very influential factor in the system 
performance. Those conditions represent a very com- 
mon pattern in the configuration of networked work- 
St&ions and indicate the reason for the inclusion of 
such a system in this comparison. 

Bus 1 

Bus 21 

Figure 1. Multi-level bus network. 

Although computer farms are not a major concern 
in production from the industry point of view, they are 
very useful for the kind of processing done in the re- 
construction and analysis of high energy physics (HEP) 
experiments, such as E-791, where the level of integra- 
tion among the parallel units is very small since the 
data can be split into small independent fragments. 
The farm’s basic architecture is shown in figure 2. The 
syst,em consists of a set of processing nodes (conven- 
t,ional workst,ations with little memory and disk capac- 
ity, fast CPU’s and no monitors) whose only function 
is crunch data at the highest speed possible. The sys- 
tem is usually dedicated to a single user, running only 
one job at a given time. 

External bus 

&zJ 
I 1 

farm bus t 

Figure 2. Farm architecture. Figure 2. Farm architecture. 

The basic differences between both systems are the 
load applied to each one and the cost of the equipment 
used. The cost of one farm system is lower than of the 
conventional one since the farm workstations are con- 
figured without some costly devices that are not nec- 
essary for the kind of processing to be done. Also the 
non-CPU system load for the farms is lower, since they 
are user dedicated and the network traffic is restricted 
only to the traffic created by the user’s job, while in the 
conventional network traffic is originated by the com- 
bination of traffics generated by several users accessing 
different disks and their respective jobs. 

3 The IBM farm performance 

The tests on a small IBM farm, only six processing 
nodes, were done in order to have comparison param- 
eters to analyze the speed-up obtained in the UNIX 
cluster. In these tests the time spent between the job 
submission and the job completion, the release time 
(T,), was the unique concern and the only parameter 
measured. CPU occupation, data transfer rates and 
other usually useful parameters were not measured be- 
cause they are meaningless in an environment where 
the CPU and the network are shared with several other 
users. 

The release time was used to calculate the speed-up 
provided by the parallel runs against the single process 
run. The single process run consists of doing the com- 
plete job using just one CPU without the CPS man- 
agement. It should be made clear that this task is 
different from a CPS submission using just one CPU 
since CPS splits every job into three subprocesses, a 
reader process, a writer process and a client process, 
what leads to sharing of the CPU between three pro- 
cesses, plus a job manager created by CPS, instead of 
only one global process like in the single process run. 

Although the code used in these tests could be tuned 
to any event per second ratio, they were done consid- 
ering only two opposite conditions, one where the job 
was I/O limited and another where the job had an ex- 
ecution time close to the real reconstruction time in 
the E-791 case. From these tests were obtained data 
of speed-up versus number of CPU’s in use. A different 
study can be made to provide graphical help to decide 
when a job should be parallelized or not and could be 
based in the interaction between the time of the single 
process run, the overhead time int,roduced by the CPS 
management per client and the number of clients. 

The Table 1 shows the results for the IBM farm in 
terms of release time for runs over different numbers 
of processing nodes. These tests were done under the 
following conditions: 
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Table l- Events/second with the asynchronous 
CPS on an IBM farm. 

Case 1 client 2 clients 4 clients 6 clients 

A (35 ev/eec) 0.956 0.896 0.782 0.705 
B (1.2 ev/sec) 0.888 1.789 3.583 5.445 

Table 2- Speed-up for asynchronous CPS on an 
IBM farm under different processing time conditions. 

1. 

2. 

Number of events examined in each run: 1500 

Events/second in single process: (A) 35 ev/sec 
and (B) 1.2 ev/sec 

From this table it is possible to make a second ta- 
ble showing the speed-up provided by the parallel runs 
over the farm when compared to the single process run. 
This speed-up can be seen in the Table 2, where the 
first row is the speed-up for an I/O bounded task while 
the speed-up for a CPU bounded task is in the last row, 
and in Figure 3 at the end of this text. 

booking at these two tables, especially in the speed- 
up table, one observes that parallel execution only 
gains if the task requires enough processing to not be 
I/O-bound. That is, if the task has a predominance in 
I/O operations when compared with CPU operations, 
there is no advantage in using several CPUs for its 
processing. The amount of CPU load that is necessary 
to be optimal for a certain number of nodes or, from 
a different perspective, how many nodes are adequate 
for a certain CPU load, has not been analyzed. 

One interesting point to be noted is the evident 
anomaly of the parallel runs in the I/O-bound case, 
where the speed of processing decreases with the ad- 
dition of new CPUs. This fact occurs because the ac- 
tivit#y of reading events took more time than analyzing 
events. Since CPS activities to manage CPUs are di- 
rectly proportional to the number of CPUs, for more 
CPUs CPS takes more time for itself and the system 
performance will degrade. 

However, since in a CPU-bound execution there are 
clear advantages in using CPS and farms, with speed- 
ups close to the expected optimals, one could expect 
that the use of CPS in a regular network of worksta- 
tions should provide responses that, at least, encourage 
its use in such systems as well. Unfortunately it will be 

shown in the next section that this is not true for most 
ordinary networks, with architectures not dedicated to 
a specific task. 

4 The UNIX cluster perfor- 
mance 

Since the main interest here is the test of the CPS man- 
agement system in a regular network, the same tests 
that were performed in the IBM farm were applied to 
the physics department cluster of SGI machines. Its 
load is almost constant during daytime and does not 
drops significantly during night time, since most of the 
users leave batch jobs to be run after hours. 

The efficiency of the system should be similar to that 
provided by the farm, because when the CPS strat- 
egy is combined with the characteristics of the event 
reconstruction algorithm one could antecipate that if 
n workstations are used to perform the parallel code 
there will be a speed-up close to n. So, if the user as- 
semblies n-f-1 CPUs, leaving one of them to write and 
read data, as it is done in the farms, he/she gets n 
CPUs doing the job. Since no one of them needs to 
know what its neighbor is doing, he/she has indepen- 
dent tasks performed by independent CPUs. Therefore 
if there are n CPUs in the system it should do the work 
in a n-th part of the time spent by just a single CPU 
doing the same job, excluding the general I/O time of 
course. It must be clear at this point that the cpu load 
does not have a great influence in these results since 
all nodes have the same cpu usage and the speed up 
is relative to the single process that is also running in 
one of those nodes. 

4.1 I/O bound tasks 

Because it is known that I/O-bound tasks do not have 
any improvement in their resolution time when run in 
parallel processors it is useful to have a benchmark 
using such tasks since this can provide some indica- 
tion about the dependence between the network traffic 
and the distributed processing performance. The E 
791 stripping code was used as an I/O bound task. 
It consists of reading an event and selecting it or not 
based on some limit values taken from the event data 
structure and geometry pattern data. This particular 
job reflects the interest in I/O bound tasks, since the 
stripping operation over the primarily reconstructed 
data set does not claim much CPU time and the read- 
ing and writing operations are performed over 8mm 
tapes, which are not fast. 

The Table 3 contains the results of several runs of 
the stripping job over the same input data used in the 
farm tests, and it was obtained under the following 
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conditions: 

1. Server node: one Personal Iris 4D/35 work- 
station 

2. Number of events examined in each run: 12971 

3. Events/second in single process: 49 ev/sec, 
which implies in an I/O-bound limitation 

These results imply in the speed-up relations shown 
at Table 4, where the first row shows the speed ratios 
among the CPS synchronous runs and the single pro- 
cess run. The second row indicates the speed ratios 
among the the CPS asynchronous runs and the sin- 
gle process run. The third and fourth rows show the 
speed-up among the several synchronous runs and the 
CPS run over just one CPU (fnpx05) and the perfor- 
mance increase when we use an asynchronous approach 
instead of the synchronous one, respectively. Figure 4 
shows the plots of these speed-up curves. 

To understand these numbers it is necessary first 
to define the differences between the synchronous and 
asynchronous versions of CPS. The differences are in 
the interprocess communication mechanism used in 
each. The early versions of CPS had only the syn- 
chronous mode, where each time that one process had 
to t,ransfer a message to another process it had to do 
so synchronously, stopping its activities while its part- 
ner was sending/receiving that message. In order to 
get a better performance, CPS was changed to enable 
an asynchronous approach to communication between 
processes. This approach was used in this case to make 
the data transfer between the reader process and all 
the clients. With this structure the reader can send a 
packet containing data and resume its reading opera- 
tion even before there is a client looking to read that 
packet. The same was not done for the communica- 
tion between writer and client processes because the 
speed gain achieved is minimal (much less than 1%) 
and also due to some safety protocols used to guaran- 
tee the processing and the statistical recording of the 
complete data set. 

One can see from table 4 that CPS is not effective 
on tasks that are I/O limited since none of the differ- 
ent configurations achieved a performance better than 
the single process case. This is an interesting result 
for anyone doing a project’s computer configuration 
planning, since it implies that tasks such as the one 
performed by the stripping code should not be run in 
a farm or in any parallel environment unless it becomes 
a CPU-bound task. 

Another remark about these results is that the per- 
formance of the asynchronous version does not change 
much for different number of working nodes while the 
same does not hold true for the synchronous case. The 

speed-up of synchronous CPS has a huge variation with 
the number of CPU’s in use, with processing speeds 
ranging from near 15% of the single process speed with 
one CPU to more than 90% for five CPU’s, while the 
range for the asynchronous CPS ranged from 85% to 
98%. The communication protocol plays a large role 
in those numbers and is the fundamental culprit in the 
low efficiency of synchronous CPS since in this case the 
reader process cannot concurrently collect data from 
the tape and each client must explicitly indicate that 
data is needed. This causes a serious delay in the read- 
ing activity since the reader must wait for the clients 
get the data just read to be able to read further data 
from tape. This delay is minimized when new clients 
are added to the system, because the reader could have 
shorter waiting times while serving more nodes. In the 
asynchronous case the waiting times are minimal be- 
cause each client serves itself with buffered data, so the 
reading process could run at a tape speed, except for 
overhead introduced by the network traffic. Then, its 
performance is more constant independent of number 
of nodes. 

A resource allocation policy could be guided from 
the “execution time t number of nodes” curve. In the 
synchronous case this curve shows more clearly how an 
excessive number of nodes can deteriorate the system 
performance. This deterioration comes from the fact 
that the above a certain level of parallelism, both the 

Process # CPUs Elapsed time events second 

Single 1 271 47.863 
MP Svnc 1 1966 6.598 

Table 3- Events/second in a I/O-bound case for 
single process. 

# of Drocessors I 1 I 2 I 3 I 5 I 7 I 9 I 
., s 

Sync/SP 0.14 0.31 0.70 0.92 0.83 0.73 
Async/SP 0.98 0.98 0.88 0.93 0.86 0.86 
Sync/Sync 1.00 2.22 5.07 6.69 5.99 5.27 
Asvnc/Svnc 7.09 3.20 1.27 1.01 1.04 1.18 

Table 4- Relative speed-ups achieved in the I/O- 
bound case. 
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overhead given by the interprocess communication and 
the processes’ waiting times are big enough to have al- 
ways more processes waiting for data than data avail- 
able. The same conclusion can also be drawn from 
assynchronous CPS, although in this case the opti- 
mal number of parallel processes is even smaller than 
for synchronous CPS due to its better communication 
mechanism, which reduces the overhead to proceed 
data transfers. 

4.2 CPU-bound tasks 

The experimental data obtained for the execution of 
the CPU-bound task is presented in Table 5. This 
kind of task represents the reconstruction code, which 
is a cpu intensive process. In order to perform this test 
with the same data pattern that was used in the I/O- 
bound task tests, a slightly modified stripping code 
was used instead of the regular reconstruction pro- 
cess. This was the same code used for the tests on 
the IBM farm, what turns feasible the comparisons be- 
tween both systems. The modifications needed in the 
stripping code were minimal, the addition of a loop 
in order to delay the event selection by an adjustable 
amount of milliseconds. The conditions for this test 
were: 

1. Server node: one Personal Iris 4D/35 work- 
station 

2. Number of events examined in each run: 1286 

3. Events/second in single process: 5 ev/sec, 
which implies an event-dominant case 

Table 6 is the speed-up table analogous to table 4, 
showing speed ratios between the asynchronous and 
synchronous CPS versions and the single process run. 
Figure 5 shows the speed-ups achieved in this experi- 
ment. 

From these tables we see an interesting difference 
between the asynchronous and synchronous versions of 
CPS. As seen in table 6 the asynchronous version pro- 
vides better speeds than its counterpart. This is true 
for the configurations tested, where the minimal im- 
provement was 13%, but its curve (figure 5) indicates 
that the difference decreases when the number of nodes 
is increased. In theory this difference shall approach 
zero if enough nodes are added to the system. 

The explanation of why this occurs is based on I/O- 
bound task limitations, since if the tape dictates sys- 
tem speed, the communication protocol cannot play a 
large role in the efficiency, as seen in the previous study 
case for a larger number of CPU’s So, if the number of 
nodes linked to the real processing grows, the number 
of events processed by each one of them decreases, 

1 Process 1 & CPUs 1 ElaDsed time 1 events/second 1 

MP S&c 1 7 1 218 I 5.899 MP Sync I 9 I 200 6.430 I 

Table 5- Events/second in an event-dominant case. 

# of nodes 1 2 3 5 7 9 

Sync/SP 0.230 0.240 0.385 0.887 1.174 1.279 
Async/SP 0.290 0.298 0.503 1.015 1.383 1.446 
Sync/Sync 1.000 1.046 1.674 3.861 5.107 5.567 
Asvnc/Svnc 1.261 1.242 1.306 1.144 1.178 1.130 

Table 6- Speed-up achieved in an event-dominant 
case. 

making them wait for the reader more frequently than 
if there are few processors. That represents an I/O- 
bound like task. 

In the other hand, neither CPS versions had shown a 
significant improvement in the processing speed, with 
a maximum gain of less than 50% when compared to 
the single process run but using a total of 8 processing 
nodes. This results means that the network traffic is 
dominant in the determination of the system speed. 
Since the network configuration enables users other 
than CPS processes it creates a significant amount of 
strange traffic competing for the single physical sup- 
port for communication, which implies bigger delays 
in interprocess communication and, therefore, a slower 
system for the CPS process. 

5 Comparisons between config- 
urat ions 

The comparison of CPS running over a farm and over a 
non-dedicated network can be divided into two differ- 
ent aspects: the computational effort per data byte and 
the network load influences on system performance. 
The former will not be discussed in detail here because 
it is not the main topic of this work. It is enough to 
point out that the parallel systems do have a very poor 
performance when the computational effort to process 
the data is much smaller than the effort spent doing 
input/output operations. 

This does not condemn parallel schemes for data ac- 
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quisit,ion for example, that are mainly dedicated to in- 
put,/output operations, because in these schemes the 
relevant aspect is the speed in which data can be col- 
lected and/or stored. In such systems the acquisition 
and storage of the data is what is really done in par- 
allel while the processing of this data in order to store 
it might or might not be done in parallel. In any case 
here the reason to use parallel systems is the speed of 
data acquisition, which means that the ratio between 
the time spent processing a given amount of data and 
the time spent doing I/O for this same data is favorable 
to the parallelization of such activities. 

With respect to the network load, there are some 
interesting results to be pointed out. Most of them 
are related to the efficiency of CPS management over 
a non-dedicated network, which was well below to that 
expected for the kind of parallel algorithms and data 
used here. Some deficiencies were already presented 
in the previous sections but will be presented in detail 
here. 

The performance of CPS in a dedicated environment 
such as a farm shows a speed improvement nearly opti- 
mal; a highly cost-effective system. But the same does 
not hold when CPS is applied to a more general net- 
work, where there is no exclusiveness in the use of the 
nodes. In this situation the performance drops signif- 
icantly, achieving no more than a small gain relative 
to t,he speed of the sequential execution in the single 
process scheme. 

Table 7 lists the ratios (in percentage) between the 
theoretical speed-up, given by the number of effec- 
tive processing nodes, and the experimental speed-up 
achieved for each configuration tested, given by tables 
2, 4 and 6. Lines 1 and 4 give the values for the IBM 
farm, the second and fourth line give them for the 
UNIX cluster running synchronous CPS while the lines 
3 and 6 contain the values for the CPS asynchronous 
runs in the UNIX cluster. The first 3 lines are related 
to I/O-bound tasks while lines 4 to 6 are related to 
CPU-bound tasks. The same data is plotted on figure 
6. 

Before start the analysis of the CPU-bound case it is 
necessary to make a remark about the strong similarity 
among the three I/O-bound cases. There, the percent- 
ages achieved are very similar to each other when there 
are more than 2 nodes in use. The same does not hold 
for the CPU bounded tasks, where the numbers from 
the farm experiment are widely different from the oth- 
ers. 

When the task is CPU-bound the performance of the 
farm environment is far better than the performance 
of the network environment. The reasons for such dif- 
ferences were already mentioned and are linked to the 
extra traffic introduced by additional messages, i.e. 

CPU bounded 

Table 7- Percentage of optimal speed-up achieved 
in different environments and tasks for some maximum 
theoretical speed-ups. 

messages that are not related with the CPS job, com- 
peting for the use of the network physical layer in the 
UNIX cluster. 

But all three environments showed a reasonable 
steadiness in their experimental/theoretical speed-up 
ratios along the changes in the number of working 
nodes in the CPU-bounded cases. This steadiness is 
remarkable for the farm tests, where the variation ob- 
served between those ratios were inside a If1.4% in- 
terval from the average value. For the non-dedicated 
network the results were less steady but also kept some 
linearity along the tests (f25% from the average value) 
relative to I/O-bounded cases (more than *lOO% fluc- 
tuation from the average). 

This steadiness can be explained by the fact that 
if you can keep all the processors busy the improve- 
ment in the system speed will be proportional to the 
increase in the number of processors in use. This also 
explains the increased fluctuations observed for the 
conventional cluster, where the cpu usage dropped sig- 
nificantly due to the extra traffic in the network. 

Although the steadiness present in the farm experi- 
ment with a cpu-bounded task is, in itself, interesting, 
it also leads to the conclusion that there must be a 
threshold in the number of worker nodes in use, since 
if too many nodes are used for the same amount of 
data, they are going to be idle part of the time, wait- 
ing for more data to process, as per the I/O-bound 
case. When the number of nodes is above this level 
the system does not provide any gain per additional 
parallel node. The determination of this threshold is a 
task that should be done prior to the farm installation, 
saving processing time and avoiding extra costs to the 
user. 

6 Conclusions 

Among the conclusions not related with CPS that can 
be drawn from this experiment are t,wo especially im- 
portant ones that are interesting to both, the system 
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manager and the final user of the system, for different 
reasons. 

The first one is the fact that not all jobs are suitable 
for parallel processing. The user can use this infor- 
mation to plan and choose which tasks are suited to 
parallelization and which are not. The manager has 
to use this information to avoid assigning parallel re- 
sources to users whose tasks are not suited for that. 

An extension of this is the fact is the second conclu- 
sion and it is related with the level of parallelism that 
each task admits. Although there are jobs that are not 
parallelizable at all, there are some others that are par- 
allelizable only up to certain levels (in reality all jobs 
can fall in this category if you consider one node as a 
system with parallelism level zero) and this is a char- 
acteristic that should be considered when considering 
the use of parallel systems. 

Determination of the parallelism level adequate for 
a given kind of task is very useful to the user, who can 
plan (and request) a computer configuration that is, at 
the same time, optimal in speed and cost. This shall 
give him a more consistent argumentation towards the 
obt,ention of his needs. On the other side the manager 
could use the same kind of information to justify the 
denial of any number of nodes that exceed the optimal 
level for a specific utilization. 

A few remarks about the use of CPS under different 
situations: the major conclusion is that CPS processes 
cannot afford competition for the resources in use, that 
is, CPS, as well as other “parallel processing” tools, 
does not do well sharing the hardware resources with 
other users. In the CPS case the sharing of the network 
is the major cause of poor performance when compared 
to an exclusive access environment, as it was demon- 
strated by the results in section 4. Sharing the cpu did 
not play a large role here since the parallel results were 
compared with sequential runs processed in the same 
condition, i.e. various users sharing the CPU. 

However, if the access to all of the system resources 
can be restricted to a single user which runs the par- 
allel process, CPS becomes a very useful tool, since 
it is simple to use and gives a performance that is 
reasonably close to optimal, introducing only a small 
overhead due to synchronization and communication 
management processes. 

In conclusion, the performances of CPS processes in- 
dicated that it is useful for dedicated systems but must 
be improved for use in a multi-shared environment. 
However CPS was developed having in mind that the 
user is a physicist and the problem to be solved is one 
that involves large calculations over large amounts of 
data and that this could be done in a dedicated sys- 
tem. The trials done here were investigations trying to 

verify if the scope of applications for CPS can be aug- 
mented with no additional development effort. This 
proved to be untrue. 
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Figure 3. Speed-ups achieved in the farm system. 
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Figure 4. Speed-ups achieved in the UNIX cluster 
with an I/O-bound task. 
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Figure 5. Speed-ups achieved in the UNIX cluster 
with a CPU-bound task. 
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Figure 6. Relative speed-ups achieved in relation 
to the theoretical optimal speed-up. 
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